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A connection between the random-phase-approximation (RPA) total energy Egrps and the GW quasiparticle
energy gy has been pointed out. More specifically we show that: SEgpa(N)/ SN=€gy, where N is the total
number of electron. The variational property of the RPA total energy is also discussed and the variational
equations for the orbital wave functions are derived. We argue that the RPA formalism is a method which can
provide both accurate ground-state energies and single quasiparticle energies.

DOI: 10.1103/PhysRevB.82.115111

There is a recent resurgence of interest to use random-
phase approximation (RPA) to calculate the electron correla-
tion energies in solids and molecules.'” This is driven by
several factors: the lack of continuing progress in charge-
density-based localized formalism to improve the density-
functional theory; the realization that nonlocal functional is
necessary to handle energies such as the van der Waals in-
teractions; the increased computational power enabling the
calculation of more complicated formalisms. The current
local-density approximation (LDA) and generalized gradient
approximation (GGA) formalisms suffers from several prob-
lems: (1) significant error in describing the molecular disso-
ciation energy; (2) underestimation of the atomic diffusion
barriers; (3) inability to describe the van der Waals interac-
tions; and (4) underestimation of the band gaps for semicon-
ductors and insulators. It is realized that to overcome these
problems, a correlation energy expression-based on orbital
wave functions might be necessary.® While the hybrid
functionals’ are developed empirically, there is a more rigor-
ous approach to calculate the correlation energy-based on
fluctuation-dissipation theorem. Under this theorem, the cor-
relation energy is related to the imaginary part of the inverse
dielectric function. When RPA is used to describe the dielec-
tric function, one yields the RPA expression for the correla-
tion energy

E .= Jm d_wTr{ln[l = X (iw)v] + X (iw) v}. (1)
o 2

Here x°(iw) is the independent-particle polarization func-
tion at imaginary frequency iw and v is the Coulomb inter-
action 1/|r—r’'|. Both x° and v should be considered as ma-
trix of index r and r’, and the Tr denotes the trace of the
matrix. The above formula can be derived from many differ-
ent ways.>%!0-14 Initially, the RPA formula was found to un-
der estimates the short-range part of the correlation
energy.'»!> Nevertheless, recent studies indicated that the
RPA provides much better bulk lattice constants and bulk/
molecule atomic dissociation energies than the LDA and
GGA. 1613 Tt was also found that the RPA formalism gives
satisfactory energy curves for the van der Waals
interactions.>*7:19

So far, all the investigations have been focused on the
accuracy of ground-state total energies and the resulting
atomic geometries (lattice constants, van der Waals mini-
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mum distance, etc.). However, there is a long desire®? to
develop a beyond-LDA/GGA formalism which not only pro-
vides more accurate ground-state energies but also accurate
quasiparticle energies (hence the electronic structures). The
quasiparticle energy is often calculated by the GW method
with satisfactory accuracy.?!'=2* Thus, it will be nice to con-
nect the RPA ground-state total energy with the GW single
quasiparticle energy. Although GW self-energy term is well
known to be related to the RPA total-energy formalism, it is
surprising that the formal connection?* between these two
energies has never been pointed out explicitly in the litera-
ture. More specifically, as our first task, we will show that:
SEgrpalN]/ SN=€Y, here N is the number of electron in the
system. As a result, the RPA might be a method which gives
both the accurate ground-state energies and the quasiparticle
energies. The above formula is the counter part of Koop-
mans’ theorem? for Hartree-Fock calculations and Janak’s
theorem for LDA calculations.?®

An ideal theory for material science simulation should
also be a variational theory, i.e., the self-consistent solution
of the wave functions should be the variational minimum (or
stationary point) of the total energy. It is the second task of
this article to discuss the variational properties of the RPA
formalism.

We now proceed with the proof for the relationship be-
tween RPA total energy and the GW quasiparticle energy.
The RPA total energy can be expressed as

ERPA=f [E _Tfilﬂ?('”)vzlﬂi(r)*‘Vion(r)P(r) d&’r

1

&PrdPr + E)I}EA (2)

1 J p(r)p(r’)
- | B2
2 |r—7'|
and here {i;(r)} is a set of orthonormal single-particle wave
functions, f; is the occupation of ; which is between 0 and
1, and p(r)==,fi|4:(r)|*. The V,,, is the ionic potential due to
the nuclei. The exchange and correlation energy of RPA can

be written as

Exeh = f ) ;’—j’TTr{ln[l - Xiw)v]}. (3)

Within RPA, the x°(r, 7", w) can be expressed as a product of
the single-particle Green’s function G(r,r’, )
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Xo(r,r',w)=2_—lj do'G(r,r',0' + w)G(r,r',0') (4)
TJ _

here the w is in the real axis and G will be approximated by
the noninteraction Green’s function G, as

) 2|:fllv[/z r)(// (r) (1 fl)libl(r)l//(r):|

w—€+in

w—€—in
(5)

here 7 is a small positive number and {¢;} are a complete
orthonormal single-particle wave-function set. After a con-
tour integral on the complex plane of ' in Eq. (4), we have
an explicit expression for x° as

X' o) = 2 gD () () (')
L]

fill-f))

fi—Ej—w+l7]

X{ Fi(1=1) ©

€—€+w+in
Now, to take SEgpa[N]/ON is equivalent to change the

occupation number f;, on one orbital k, thus 6Egpa/ Ofy. If we
assume {;, €;} are fixed while the &f; is changing, we have

%_ _l AV (r
of, —f( 2%( YV (r)
ERPA
+[V, wn(r)+VH(V)]|</fk(r)|2)d3r+ﬁa;C )
Tk

Here Vy(r)=[p(r')/|r=r'|dr" is the Hartree potential.
Before going on, we first notice that \°(r,r",w)=x"(r",r,
—w), as a result, the half axis integral in Eq. (3) can be
expanded into a full axis integral from —% to %.!° Now,
&EEEA/&fk can be expressed as (?EEEA/ X’ X ax°/ df,. The
matrix derivative to In(1- Xov) can be understood as the de-
rivative to its Taylor expansion. As a result, we have

RPA % 0
9Exc _ J d—“’Tr[Vu- XO(iw)V)-IM . (8

Afx 4ar A

Now, under RPA, 1-x(iw)v] ' =ve(iw)
=W(r,r',iw) with W being the screened Coulomb interac-
tion. Using Egs. (5) and (6), it is straightforward to show that

—00

(9X0(r,r',a))

=GJ(r',r e —
l?fk s( k

) (N P(r')
+G(r,r', e+ @) (N (r'). )
Substitute this into Eq. (8), we have
RPA o
e - G AR ey

+G,(r,r' €+ i), (r) i (r")]drd®r'

“dw )
= — W', riw)G(r',r, €
Lo 27

LA
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=f G2, €) br)dPrdr’ (10)

here we have used W(r,r',w)=W(r',r,—w), which can be
shown from v(1-x"»)~!. 3 is the GW self-energy term (an
imaginary o integral is used here although it can also be
changed into an real w integral). Combine Eq. (7) with Eq.
(10), we see that dEgps/ df; is the GW quasiparticle energy
ekW for orbital ¢,. Note that this result is valid for both
conduction bands and valence bands, and {i, €;} need not to
be the solution of the GW equation, and €, does not need to
equal ekGW

In the above derivation, we have assumed {;, €;} are fixed
while f; is changing. In reality, in a self-consistent proce-
dure, {¢;, €;} might change when f; is changed. In order for
the above result to remain valid under such self-consistent
calculation, we need {i;, €} to be the variational solution of
Erpa of Eq. (2) so that the additional change of Egp, caused
by the changes of ¢; and ¢; (induced by the change of f) is
zero. One way to carry out a variational calculation of RPA is
via the optimized-effective-potential (OEP) method,?’” under
which the {i;, €} are solutions of a Schrodinger’s equation
with a local potential Vogp(r), and the Egp, is a minimum
under the variational change of Vgp (i.e., under the change
in {¢;, €;} induced by the change in Vgp). However, here we
will discuss the variational property of RPA under the direct
explicit change of {i;, €;} with only the constraint that {i} is
an orthonormal complete set. This is more variational with
less constraints on {¢;} and {¢;} compared with the OEP ap-
proach. We start with the Klein’s functional,®28 which ex-
presses the total energy as a functional of the fully flexible
Green’s function G(r,r’,w). The Klein’s functional under
RPA approximation is

Ex[G]= ExN[Gl+ UylG]
+Tr(1 = Gy'G) = Tr{In(- G ]+ uN.  (11)

Here, u is the Fermi energy and N is the total number of
electron. Exe: is the same as in Eq. (3), except that the x° is
expressed as GG as in Eq. (4). U4[G]= 1/2fp(r)p(r ) |r
—r'|drd®r' is the Hartree energy, and p(r):-f G(r,r,iz
+u)e*%dz (8 is a small positive number), G, (w) w+V?/2

—Vi.n- We have used a matrix notation for index r and r’. All
the terms except Uy have a vertical line w integral at w=iz
+u: 1/27f% dze™™®, we will call this contour I

It has been shown that®?® when G is approximated by G,
in Eq. (5) and f;=1 for valence band, f;=0 for conduction
band, then Eg of Eq. (11) equals Egps of Eq. (2). To prove
this, one needs to show the last three terms in Eq. (11) equal
the first two terms in Eq. (2). Using the @ contour integral
(closed at left plane), it is straight forward to show

Tr(l - Gy'G,) = E {— ei+f ¢;‘(- évz + vi0n> zﬂid3r]
(12)

here v denotes the valence bands. Carrying out the trace
integral directly, the second last term of Eq. (11) becomes
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-1 - .
— Tr[In(- G;l)] = 2—2 f In(- iz — p + €)%z
i J.

=2 (- p). (13)

iev

The second line of this equation has been derived in Ref.
29 [see its Eq. (54) and its Appendix A]. Combine Egs. (12)
and (13), we see that Ex(G,) of Eq. (11) equals Egps of Eq.
(2). Note that, this is true as long as G equals G, described
by {#;, €} in Eq. (5) but {i;, €;} do not need to be any self-
consistent solutions. Furthermore, in the following, we will
only consider f;=1 for valence band and f;=0 for conduction
band. Thus, {f;} will not change when {;, €;} change.

Now, we take a derivative of Ex[G] respective to G.
When this derivative is taken, we treat each G element
G(r,r',iw) as an independent variable. Thus, the derivative
itself is also a matrix of index r,r" and parameter iw. We first
note the following: — Tr[ln( G H]=G™; %Tr(l G,'G)
=-Gy', 5Un=Vu, ERPA[G] U1=x"v] 11X’/ 0G=WG
=3.. Put these together we have

2 EdG]=

1
-=V2+V._ +V,+3|+G. (14
(9G 2 ion H 2 ( )

Thus, dEx/dG=0 is the Dyson’s equation for the Green’s
function G. This is known in the original paper of Klein.?® If
we can get the full G which satisfies the Dyson’s equation,
then it gives the variational minimum (or stationary point) of
Eg. Unfortunately, the Dyson’s equation for the full Green’s
function G(r,r’,w) is computationally difficult to solve, and
the noninteraction Green’s function G, of Eq. (5) cannot sat-
isfy the Dyson equation regardless what ¢;, €; are used, al-
though it might be a good approximation of the full G. If we
restrict ourselves to G, (hence {¢;,¢}), we then want to
know what are the corresponding variational equations of
Egpa under the change of ; and €. Because EgpalG,]
—EK[G ] thus AERPA—AEK—Tr[(ﬁEK/ 0G)AG ] We first
calculate T=Tr[(dEx/dG)G], then take the derivative on G,
later. We first replace {zﬁ,,e} with notation {¢;,\;} in the
expression of G, while keep using {¢;, €} in the expression
for (dEg/ dG), thus we can take the derivative later only on
{¢;,\;}. One can regard T as a measure of the error on the
Dyson equation when G; is used to replace the full G. Using
Eq. (14), we now have

T=Tr{&<G;] _ ! f dw[[—w+H0
G 2t
+3(0)]+ 3 (0~ ej><pj(r)wj<r’)]
< @,(r') @i (r)

w —

e °dPrd’r’

= E [<<P5|Hi|<l—7i> -

Here Hy=—1/2V?+V,,,+Vy and H,=Hy+3.\;) for i
ev and H;=-3,(\;) for i € ¢ (conduction band). The T in-

> euleXealyy. (195

iev,j
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tegral on w has been carried out analytically using the GW
expression for 2(w), and we have

w
20 o) = f EW(F,F',iw')Gv@)(r,r’, w—iw')
(16)
and

D llfz(r)l,b (r")
”71) )

(17)

Gyo(r.r',0) =

iev(c) =

where 7,>0 and 7,.<0. Thus, G, and G, are the first and
second terms of G, in Eq. (5), describing the hole and elec-
tron propagations, respectively, and G,(w)+G (w)=G,(w).
We will only concern about the real part of 7. For this we can
defined a Hermitianized H;. We will use the notation

A(r,r" N =[A(r,r" ,N)+A*(r",r,\)]/2. Then to get Re(7),
one can change H; to H; in Eq. (15). We will also use only
real €; and \;. We now change {¢;,\;} from {;, €} to {Ay;
+;,A€;+ €} and use the constraint that {¢,} is orthonormal,
hence <A¢i| ‘//j>=—<¢i|A¢j> and AERPA=A¢[,)\[[RC(T)]a we
then have

AEgpp = 2 Al )| (H; - H))\ )
ij

+ 3 @ AG (9

Note one can also get this equation by directly taking the
derivative from Eq. (2). But the use of Eq. (14) helps us to
connect our equations to the more general variational
equation-based on full G. In some sense, the condition for
A Re(7)=0 is to minimize the error on the Dyson’s equation
when G is restricted to G;.

Now, in order for the Egxp, to be variationally stationary,
we need every individual term in Eq. (18) to be zero, we thus
have the following variational equations for the RPA total
energy:

(Yl[Hy+Z(&) + 2, (e)]|eh) =0 for jec,iev,

<‘//j|[ic(v)(é—i) - Sc(v)(ej):nl;b) =0 for i,j € U(C),

S @l =0 for icvle).  (19)
w

In principle, this set of equation can be used to uniquely
determine {¢;, €} because the number of equations is the
same as the number of unknown variables (mind that {¢;} is
a complete set, thus its degree of freedom is the same as the
number of r points). Note that the first equation for jec, i
e v resemble the GW wave-function equation, except that

3, (€) has been replaced by > »(€)). Since the GW quasipar-
ticle wave functions {y°"} [whrch are the solutions of the
GW equation [H0+2(eldw)]¢lcw YyEW] are not orthonor-
mal, one cannot expect {i;} to satisfy the exact GW equation.
One should not use {/7", "} in the G, expression of Eq.
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(5) either due to their lack of orthonormal condition. Thus,
the above Eq. (19) is a way to ensure that {¢;} can be ortho-
normal while satisfying equations close to the GW equations.
For the i,j € v case, the equation can be rewritten as

<¢j|[H0 + S_fc(ei) + iv(ea):H l//z>
= <¢J|[Ho + 2_’c(éj) + 2_’U(ea)]| Wl> (20)

Here €, can be the energy at the center of € and €. A
similar equation can be written for the i,j € ¢ case. Thus,
again both sides of Eq. (20) resemble the GW equation. If the
2(w) does not have the w dependence (e.g., under static
approximation), then all the above equations can be satisfied
by {1,0,-GW} and in that case {wiGW} is orthonormal. Another
interesting fact is that the ¢; is not given by the expectation
value of ¢; on a single-particle Hamiltonian, instead it is
determined by the last equation in Eq. (19). Note that this is
reasonable as long as the resulting ¢€; can be used to describe
the dynamical properties of G, properly. This will not affect
our SEgpa[N]/ SN= e,(fW conclusion, since ¢; does not need to
equal €7V

It is still an unknown question for whether the exact so-
lution of Eq. (19) will give a physically meaningful result of
{¢;, €}, e.g., whether it will be close to {wcw GW} Future
numerical tests can help to address this question. One alter-
native method is to force {;, €} to be close to {tﬁGW GW} (or
its orthogonalized counterpart) while try to satisfy Eq. (19)
to the maximum extent. Another commonly used and nu-
merically more practical approach is to generate {i;,€;} as
the eigenstates and energies of a w independent Hamiltonian
H, (e.g., LDA or GGA) which is close to the GW single-
particle Hamiltonian. This is much like the OEP approach.?’
Under the exact OEP approach, by definition, the Egp, is a
minimum under variational change of Vqgp, thus the varia-
tional principle will be guaranteed. The question there is how
close is Vogp to Vipa or Vigga, and how close is the resulting
{th, €} to {y", "} Let us discuss here that if the exact
Vogp is not used, instead only Vip, or Vgga, and their cor-
responding self-consistent LDA or GGA {i;,€;} are used
(much like in many of today’s non-self-consistent RPA cal-
culations), how large could be the violation of the RPA varia-
tional principle. Under such a scheme, the change {Ay;;,A€;}
is determined from AH, (e.g. caused by electron occupation
change or atomic movements) via perturbation theory. If

we further make the approximation ic(v)(e,-)—ic(v)(ej)
Zo2cw)(€)(€—€)), here €,=(€;+¢€;)/2 (which is reasonable
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since most interstate rotations happen at small |e,-—ej ,
derived from Eq. (18), we have

AEgpy=2Rey X WilARv) X (Y{[Hy + 2 (€)

iev,jec i j

+3,(e) ) p+ 2 (W AH )l 2 L€
iLjev

+2<¢,|AH|w]><w,| E(e)wf, (21)

i,jec

There are good reasons to believe the terms in the above
formula should be small, although not exactly zero. As dis-
cussed before, the error for the first term should be small if
; is close to ¢GW As we known?? gbLDA is often very close
to d/GW thus similarly, such wave function ¢; should also be
close to the eigenstate of Hy+2.(€)+2,(¢), and since
(¢;|)=0, the first term in Eq. (21) should be ‘small. For the
second and third terms in Eq. (21), they both involve ex-
change integrals between conduction bands and valence
bands [this can be seen by plugging in Egs. (16) and (17)].
Such electron-hole exchange integral is usually very small
[on the order of meV (Ref. 30)] for smooth W(r,r’,w). This
is because the electron and hole wave functions can have
different atomic characteristics, their product integrates to
zero over an unit cell. Thus the main contribution is likely
from the local-field effect of W(r,r’, ), which is usually an
order of magnitude smaller than the main part of W.2>3!
Thus, overall, we expect the AEgp, in Eq. (21) to be small,
and the variational principle will be valid approximately. It is
up for future numerical work to test how small the terms are
in Eq. (21) and whether they can be ignored in practice.

The satisfaction of the variational principle will ensure
that SEgpa[N]/ SN=€"(N) is valid under self-consistent cal-
culation. Note, for a sufficiently large system (e.g., bulk) this
also means Egpa[N = 1]-Egpa[N]= = €7"(N). Finally, the
variational principle also allows the calculation of atomic
force using Hellmann-Feynman theorem as Fj
=[p(r)dV,,,(r)/ Rd*r, here R is used to denote the atom and
its coordinates. The Klein’s functional also provides a way to
go beyond the current RPA formalism, e.g., to provide a
more accurate treatment for short-range correlation effect,
which can improve both the ground-state total energies'>!3
and the quasiparticle energies.”?
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